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Abstract

The aim of this thesis is to analyze and investigate numerically the Williamson fluid

model with MHD, Joul heating, concentration and chemical reaction of the flow of an

electrically conducting nanofluid past a nonlinear stretching sheet through a porous

medium. The governing nonlinear boundary value problem involving the partial differ-

ential equations is reduced to a system of nonlinear ordinary differential equations by

using appropriate similarity transformations. The nonlinear boundary values problem is

solved numerically by using well known shooting technique opted in the computational

software Matlab. The influence of some important physical parameters such as viscosity,

thermal conductivity, radiation and Williamson parameters on velocity profile, temper-

ature distribution, concentration profile, Nusselt number, skin friction and Sherwood

number are studied and presented in graphical and tabular forms. It is observed that by

rising the values of the viscosity parameter, the skin friction and local Nusselt number

are decreased. By rising the values of Williamson parameter, the Sherwood number also

shows a decreasing behaviour.
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Chapter 1

Introduction

Various enormous efforts have been made in the flowing of fluid due to stretching sheet

operation over the last two decades to provide valuable descriptions of industrial pro-

cesses and standard manufacturing, such as food preservation processes, petroleum fil-

tering operation, polymer manufacturing, crystal manufacturing and paper production

[1]. As a result, many researchers have made efforts toward the novel findings that serve

this field, due to and for the sake of the established importance of these topics [1]. The

flow in the boundary layer was investigated, on a continuous solid surface with constant

speed. Sakiadis [1], analyzed heat transfer in two dimensional flows past a flat past a flat

moving sheet. Due to ambient fluid entrainment, this condition represents a separate

class of boundary-layer problem, with a solution that differs significantly from that of

boundary-layer flow over a semi-infinite flat plate [1]. The first contributions to this area

were made by Sakiadis, who discussed the fluid flow due to a stretching surface [1].

The impact of heat transport phenomenon in fluid flows over a stretching sheet has

significant consideration in scientific and technical developments. These achievements

include high-temperature steel rolling, metal extrusion, metal working, paper manufac-

ture, glass fibre production, crystal flowing, and continuous casting [1]. Crane [2], the

problem of Blasius fluid flow due to a stretching sheet was investigated, which is impor-

tant in the field of plastic film drawing. In 1970, he continued his work to stretching

surface [2]. He analytically analyzed Nusselt number and skin friction. Chen and Char

[3], investigate the mechanism of wall heat flux and its effect on a linearly stretching

plate.
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Introduction 2

The heat transfer properties of a continuously micropolar boundary layer were investi-

gated as fluid flowed over a linearly stretching, continuous sheet by Mohammadein and

Gorla [4]. Shortly after, the Mohammadein, Gorla and Liu [4],[5], perceived the signifi-

cance of hydromagnetic flow over a stretching sheet in general by considering heat and

mass transfer. Cortell [6], the concept of an impermeable stretching sheet was used to

present a steady fluid of an approach to the fluid behaviour based on flow and mass trans-

fer. In a later study, Chen [7] attempted to complete his work on MHD non-Newtonian

power-law fluid over a stretching sheet and some significant mechanisms. In the presence

of heat generation/absorption and thermal radiation, the problem of a power-law fluid

past a stretching surface with a magnetohydrodynamic has been addressed [7].

An increasing number of investigations on the exponentially stretching sheet have been

performed recently by various researchers [8–10]. Many authors [11–16],take the prob-

lem of the nonlinearly stretching sheet. Because of its widespread applications in the

chemical and petroleum industries, biological sciences, and geophysics, the analysis of

non-Newtonian fluid has received a significant attention.

In particular, boundary layer flows of non-Newtonian fluids over a stretching surface

are prevalent in several industrial processes, for example, drawing of plastic films, ex-

trusion of a polymer sheet from a dye, oil recovery, food processing, paper production

and numerous others [14]. The well-known Navier-Stokes equations are ineffective for

describing the flow behaviour of non-Newtonian materials [14]. On the other hand, non-

Newtonian materials have a variety of constitutive relations proposed in the literature

due to their versatility. Such materials have been classified into three subcategories

known as differential, integral and rate types [14]. Flow investigation using a variable-

thickness by a stretching sheet has a wide range of technological applications. Although

this concept is well-understood for flat sheets but there is little informations available

for variable thickness sheets [14].

In this thesis, we apply the Williamson model, that was presented by Williamson in

1929 [17] . Because of the use of this form of fluid model, more study is being done in

this area [18–23]. Extrusion of plastic or metal sheets, is the most valuable application

in the study of heat transfer. Observation of cooling and heat transfer is very important

in the extrusion process because of its effects on final product [23]. In the present work,

an attempts to examine the Williamson flow of fluid due to non-linear a stretching sheet

with viscous dissipation and thermal radiation [24].



Introduction 3

1.1 Thesis Contributions

In this thesis, first the work of Ahmed M. Megahed [24] reviewed in detail and then ex-

tended by MHD, Joul Heating, concentration and chemical reaction. The non-dimensional

PDEs are converted into the dimensionless system of ODEs by using the similarity

transformation and boundary conditions. The influence of different parameters like

Williamson parameter δ, radiation parameter R, thermal conductivity ε, viscosity pa-

rameter α, Eckert number Ec on the skin friction 1
2(Rex)

1
2Cfx, local Nusselt number

(Rex)−
1
2Nux and Sherwood number Re

− 1
2

x Shx which has been discussed in graphical

and tabular forms.

1.2 Thesis Layout

A brief outline of the present thesis is given below.

Chapter 2 discuss few fundamental definitions and terminologies, which will be later

used in theis thesis.

Chapter 3 shows the numerical investigation of the Williamson fluid flow with vis-

cous dissipatin and thermal radiation. The results are obtained by using the shooting

method.

Chapter 4 extends the model discussed in chapter 3 by including MHD, joule heating

and concentration.

Chapter 5 contains the conclusion of the thesis.

References used in the thesis are specified in Biblography.



Chapter 2

Preliminaries

This chapter contains some basic definitions, termenologies and governing laws, widely

used in the rest of the thesis. This chapter will help a reader who is interested in the

research problems discussed in the next chapters.

2.1 Some Basic Definitions

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear stress

no matter how small the shear stress may be.”[25]

Definition 2.1.2 (Fluid Statics)

“The study of fluid at rest is called fluid statics.”[26]

Definition 2.1.3 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behaviour of the fluid

(liquid or gass) at rest as well as in motion.”[26]

Definition 2.1.4 (Fluid Dynamics)

“The study of fluids in motion if the pressure forces are also considered is called fluid 

dynamics.”[26]

4



Basic termenologies 5

Definition 2.1.5 (Fluid Kinematics)

“The study of fluids in motion, where pressure forces are not considered, is called fluid

kinematics.”[26]

Definition 2.1.6 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the movement

of one layer of fluid over another adjacent layer of the fluid. Mathematiclly,

µ =
τ
∂u
∂y

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y represents the velocity gradient.”[26]

Definition 2.1.7 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It is de-

noted by Greek symbol ν called nu. Mathematically,

ν = µ
ρ .”[26]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the ther-

mal diffusivity and can be defined as:

α =
k

ρCp
,

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density and Cp 

is the specific heat at constant pressure.”[27]

Definition 2.1.9 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the tem-

perature gradient. The coefficient of proportionality is a material parameter known as

the thermal conductivity which may be a function of a number of variables.”[28]
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2.2 Types of Fluid

Definition 2.2.1 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all the

fluids are real fluids. Some of its examples are petrol, air etc.”[26]

Definition 2.2.2 (Ideal Fluid)

“A fluid, which is incomperssible and is having no viscosity, is known as an ideal

fluid. Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity.”[26]

Definition 2.2.3 (Newtonian Fluid)

“A real fluid in which the shear stress is directly proportional to the rate of shear strain

(or velocity gradient), is known as a Newtonian fluid. Some of its examples are water,

air, alcohol, glycerol, thin motor oil etc.”[26]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of shear

strain (or velocity gradient), is known as a Non-Newtonain fluid. Some of its examples

blood, saliva, Soap solutions, cosmetics, and toothpaste etc.

τxy ∝
(
du
dy

)m
, m 6= 1

τxy = µ
(
du
dy

)m
.”[26]

2.3 Types of Flow

Definition 2.3.1 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes from

point to point or in other words the density (ρ) is not constant for the fluid. Thus,

mathematically, for compressible flow

ρ 6= c,
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where c is constant.”[26]

Definition 2.3.2 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the fluid.

Liquids are generally incompressible while gases are compressible. Mathematically, for

incompressible flow

ρ = c,

where c is constant.”[26]

Definition 2.3.3 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.”[26]

Definition 2.3.4 (Irrotational Flow)

“If the fluid particles while flowing along sream-lines, do not rotate about their own axis

that type of flow is called irrotational flow.”[26]

Definition 2.3.5 (External Flow)

“Flows over bodies immersed in an unbounded fluid are termed external flows.”[25]

Definition 2.3.6 (Internal Flow)

“Flows completely bounded by solid surfaces are called internal or pipe or duct flows.

The flow of water in a pipe is an example of internal flow.”[25]

Definition 2.3.7 (Steady Flow)

“Steady flow is defined as that type of flow in which the fluid characteristics like veloc-

ity, pressure, density etc., at a point do not change with time. Thus for steady flow,

mathematically, we have

∂Q

∂t
= 0

where Q is any fluid property.”[26]
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Definition 2.3.8 (Unsteady Flow)

“Unsteady flow is that type of flow, in which the velocity, pressure or denstiy at a point

changes with respect to time. Thus, mathematically, for unsteady flow,

∂Q

∂t
6= 0

where Q is any fluid property.”[26]

2.4 Modes of Heat Transfer

Definiton 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal energy

from one point to another within a medium or from one medium to another due to the

occurrence of a temperature difference.”[28]

Definition 2.4.2 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a medium

and is due solely to the temperature of the medium.”[28]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduction.”[28]

Definition 2.4.2 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the motion

of a fluid. The convection heat transfer between two dissimilar media is governed by

Newtons law of cooling. It states that the heat flow is proportional to the difference of

the temperatures of the two media.”[28]
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2.5 Dimensionless Numbers

Definition 2.5.1 (Prandtle Number)

“This number expresses the ratio of the momentum diffusivity (viscosity) to the thermal

diffusivity. Mathematically, it can be defined as

Pr =
µCp
k

=
ν

α

where µ represent the dynamic viscosity, Cp denotes the specific heat capacity, k rep-

resent thermal conductivity, ν represent kinematic viscosity and α represent thermal

diffusivity. With small Pr numbers (Pr < 1), the molecules heat transfer by conduction

predominates over that by convection. With (Pr > 1), it is opposite case.”[29]

Definition 2.5.2 (Nusselt Number)

“A hot surface is cooled by a cold fluid stream. The heat from the hot surface, which

is maintained at a constant temperature, is diffused through a boundary layer and con-

verted away by the cold stream. Mathematically,

Nux =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and k

stands for average thermal conductivity.”[30]

Definition 2.5.3 (Eckert Number)

“It is a dimensionless number used in continum mechanics. It describes the relation be-

tween flows and the boundary layer enthalpy difference and it is used for characterized

heat dissipation. Mathematically,

Ec =
u2

CpOT
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where Cp denotes the specific heat capacity, u is flow velocity and OT is temperature

difference. ”[25]

Definition 2.5.4 (Skin Friction)

“It expresses the dynamic friction resistance originating in viscous fluid flow around a

fixed wall. Mathematically,

Cfx =
τw

1
2ρw

2
∞

where τw denotes the shear stress on the wall, ρ is the fluid denstiy and w∞ is the free

fluid flow.”[29]

Definition 2.5.5 (Sherwood Number)

“It is a non-dimensional quantity which shows the ratio of the mass transport by con-

vection to the transfer of mass by diffusion. Mathematically,

Shx =
kL

D

where L is characteristic length, D is the mass diffusivity and k is the mass transfer

coefficient.”[29]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force of the

fluid. Mathematically,

Rex =
V L

ν

where V denotes the free stream velocity, L is the characteristic length and ν stands for

kinematic viscosity.”[26]
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2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass states that the time rate of change of mass in a

fixed volume is equal to the net rate of flow of mass across the surface. The mathemati-

cal statement of the principle results in the following equation, known as the continuity

equation

∂ρ
∂t + O.(ρv) = 0.”[28]

Definition 2.6.2 (Momentum Equation)

“The principle of conservation of linear momentum (or Newton’s Second Law) states

that the time rate of change of linear momentum of a given set of particles is equal

to the vector sum of all the external forces acting on the particles of the set, provided

Newton’s third law of action and reaction governs the internal forces. Mathematically,

it can be represented as

∂
∂t(ρv) + O.[(ρv)v] = O.σ + ρg.”[28]

Definition 2.6.3 (Energy Equation)

“The law of conservation of energy (or the First Law of Thermodynamics) states that

the time rate of change of the total energy is equal to the sum of the rate of work done

by applied forces and change of heat content per unit time.

∂ρe
∂t + O.ρve = −O.q +Q+ φ.”[28]



Chapter 3

Williamson Fluid Flow over a

Nonlinearly Stretching Porous

Sheet with Viscous Dissipation

and Thermal Radiation

3.1 Introduction

In this chapter, the numerical solution of Williamson fluid over a nonlinearly stretching

porous sheet in the presence of viscous dissipation and thermal radiation is addressed.

The governing nonlinear partial differential equations are converted into a system of

dimensionless ordinary differential equation by using some appropriate similiarity trans-

formations. In order to solve the ODEs, the shooting method is applied. For the

numerical computations, the computational software MATLAB is opted. The numerical

solution of the system of ODEs is analysed for various values of the physical parameters

of interest. Tables and graphs are used to show the numerical results. This chapter

provides a detail review of [24].

12
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3.2 Problem Formulation

Figure 3.1: Fluid Flow over a nonlinearly stretching sheet.

Here a 2-D Williamson flowing of fluid over a nonlinearly stretchable sheet with thermal

radiation and viscous dissipation has been considered. It is also assumed that the vari-

able stretching velocity of the porous medium is uw = cxm. The governing equations

are

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ∞

∂

∂y

(
µ(T )

∂u

∂y
+ µ(T )

Γ√
2

(
∂u

∂y

)2
)
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρ∞cp

∂

∂y

(
K(T )

∂T

∂y

)
+
µ(T )

ρ∞cp

(
1 +

Γ√
2

∂u

∂y

)(
∂u

∂y

)2

− 1

ρ∞cp

∂qr
∂y

. (3.3)

The affilliated BCs are:

u = cxm, Tw(x) = T∞ +Axr, v = 0 at y = 0

T → T∞, u→ 0 as y →∞

 (3.4)



Williamson Fluid Flow 14

In this model, u and v are the velocity components, which are represented in xy-

directions, respectively.

The fluid density is ρ∞ and heat flux term is qr while the cp is the specific heat at a

constant perssure.

The temperature T 4 can be extended by using the Taylor series about T∞ as follows

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

Ignoring the highest order terms, we have

T 4 = T 4
∞ + 4T 3

∞(T − T∞),

T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞,

T 4 = 4T 3
∞T − 3T 3

∞.

According to the Rosseland approximation we can use the qr as a function of temperature

as follows.

qr = −4σ∗
3k∗

∂T 4

∂y
.

Here the Stefano-Boltzmann constant is σ∗, while the absorption coefficient is k∗. [23]

For the conversion of (3.1)-(3.3) into the system of ODEs, the following similirity trans-

formations have been used

η =

(
cxm−1

ν∞

) 1
2

y,

ψ(x, y) = (cxm+1ν∞)
1
2 f(η),

θ(η) =
T − T∞
Tw − T∞

.


(3.5)

In the above formulae the kinematic viscosity is ν∞, while the stream function isψ (x, y),

which obeys the continuity equation (3.1) by using the following:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.6)
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We also know that

µ = µ∞e
−αθ, K = K∞(1 + εθ) (3.7)

where µ∞ is the viscostiy and K∞ represents thermal conductivity. [31]

From (3.5), η andψ can be expressed as below:

• η =

(
cxm−1

ν∞

) 1
2

y =

(
c

ν∞

) 1
2

x
m−1

2 y

• ψ = (cxm+1ν∞)
1
2 f(η) = (cν∞)

1
2x

m+1
2 f(η)

The detailed process for converting (3.1)-(3.3) into the non-dimensional form has been

described as follows

• u =
∂ψ

∂y
= (cν∞)

1
2x

m+1
2 f ′(η)

(
c

ν∞

) 1
2

x
m−1

2

= cxmf ′(η). (3.8)

• v = −∂ψ
∂x

= − (cν∞)
1
2

[
x

m+1
2 f ′(η)

(
c

ν∞

) 1
2

y

(
m− 1

2

)
x

m−3
2 + f(η)

(
m+ 1

2

)
x

m−1
2

]
= − (cν∞)

1
2

(
c

ν∞

) 1
2
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η)

= −c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η)

= −c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η). (3.9)

• ∂u

∂x
=

∂

∂x

(
cxmf ′(η)

)
,

= c

[
xmf ′′(η)

(
c

ν∞

) 1
2

y

(
m− 1

2

)
x

m−3
2 + f ′(η)mxm−1

]
= cxm

(
c

ν∞

) 1
2
(
m− 1

2

)
x

m−3
2 yf ′′(η) + cmxm−1f ′(η)

= c
3
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

3m−3
2 yf ′′(η) + cmxm−1f ′(η). (3.10)

• ∂v

∂y
=

∂

∂y
[− c (m− 12

)xm−1yf ′(η)− (cν∞)
1
2 (

m+ 12
)xm−1

2 f(η)]
= −c

(
m− 1

2

)
xm−1

[
yf ′′(η)

(
c

ν∞

) 1
2

x
m−1

2 + f ′(η)

]
− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f ′(η)

(
c

ν∞

) 1
2

x
m−1

2
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= −c
(
m− 1

2

)
xm−1

(
c

ν∞

) 1
2

x
m−1

2 yf ′′(η)− c
(
m− 1

2

)
xm−1f ′(η)

− cxm−1

(
m+ 1

2

)
f ′(η)

= −c
3
2

1

(ν∞)
1
2

(
m− 1

2

)
x

3m−3
2 yf ′′(η)− cxm−1f ′(η)

(
m− 1

2
+
m+ 1

2

)

= −c
3
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

3m−3
2 yf ′′(η)− cmxm−1f ′(η). (3.11)

Adding (3.10) and (3.11) we get (3.1)

∂u

∂x
+
∂v

∂y
=

[
c
3
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

3m−3
2 yf ′′(η) + cmxm−1f ′(η)

]
,

+

[
− c

3
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

3m−3
2 yf ′′(η)− cxm−1f ′(η)

]
.

⇒ ∂u

∂x
+
∂v

∂y
= 0. (3.12)

Hence the continuity equation is satisfied, identically. Now the detailed procedure for

the conversion of (3.2) into the non-dimensional form is as follows,

• ∂u

∂y
= cxmf ′′(η)

(
c

ν∞

) 1
2

x
m−1

2

= c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η).

• u
∂u

∂x
= cxmf ′(η)

[
c
3
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

3m−3
2 yf ′′(η) + cmxm−1f ′(η)

]

= cxmf ′(η)c
3
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

3m−3
2 yf ′′(η) + cxmf ′(η)cmxm−1f ′(η)

= c
5
2

1

(ν∞)
1
2

x
5m−3

2 yf ′(η)

(
m− 1

2

)
f ′′(η) + c2mx2m−1f ′

2
(η). (3.13)

• v
∂u

∂y
=

[
− c

(
m− 1

2

)
xm−1yf ′(η)

− (cν∞)
1
2

(
m+ 1

2

)
x

m−1
2 f(η)

]
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)

= −c
(
m− 1

2

)
xm−1yf ′(η)c

3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)

− (cν∞)
1
2

(
m+ 1

2

)
x

m−1
2 f(η)c

3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)
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= −yf ′(η)
c
5
2

(ν∞)
1
2

(
m− 1

2

)
x

5m−3
2 f ′′(η)− c2f(η)

(
m+ 1

2

)
x2m−1f ′′(η)

= − c
5
2

(ν∞)
1
2

x
5m−3

2 yf ′(η)

(
m− 1

2

)
f ′′(η)

− c2x2m−1f(η)

(
m+ 1

2

)
f ′′(η). (3.14)

• ∂u

∂y
= c

3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η).

•
(
∂u

∂y

)2

=

(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)

)2

=

(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2

)2

f ′′
2
(η).

• µ
∂u

∂y
= µ∞e

−αθc
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η).

• µ
Γ√
2

(
∂u

∂y

)2

= µ∞e
−αθ Γ√

2

(
c
3
2

1

(ν∞)
1
2

x
3m−1

2

)2
f ′′

2
(η).

• ∂

∂y

[
µ(T )

∂u

∂y
+ µ(T )

Γ√
2

(
∂u

∂y

)2 ]
=

∂

∂y

[
µ∞e

−αθc
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)

+ µ∞e
−αθ Γ√

2

(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2

)2

f ′′
2
(η)

]

= µ∞c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2

[
e−αθf ′′′(η)

(
c

ν∞

) 1
2

x
m−1

2

+ f ′′(η)e−αθ(−αθ′)
(
c

ν∞

) 1
2

x
m−1

2

]
+ µ∞

Γ√
2

(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2

)2 [
2e−αθf ′′(η)f ′′′(η)

(
c

ν∞

) 1
2

x
m−1

2

+ e−αθ(−αθ′)
(
c

ν∞

) 1
2

x
m−1

2 f ′′
2
(η)

]
=
µ∞
ν∞

c2x2m−1e−αθf ′′′(η)− µ∞
ν∞

c2x2m−1e−αθ(αθ′)f ′′(η)

+
2µ∞Γ√

2

(
c
3
2

ν
1
2∞

x
3m−1

2

)(
c
3
2

ν
1
2∞

x
3m−1

2

)
e−αθ

(
c

ν∞

) 1
2

x
m−1

2 f ′′(η)f ′′′(η)

− µ∞Γ√
2

(
c
3
2

ν
1
2∞

x
3m−1

2

)(
c
3
2

ν
1
2∞

x
3m−1

2

)
e−αθ(αθ′)

(
c

ν∞

) 1
2

x
m−1

2 f ′′
2
(η)
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=
µ∞
ν∞

c2x2m−1e−αθf ′′′(η)− µ∞
ν∞

c2x2m−1e−αθ(αθ′)f ′′(η)

+ µ∞

(√
2c

3
2x

3m−1
2

√
ν∞

)
Γ
c2

ν∞
x2m−1e−αθf ′′(η)f ′′′(η)

− µ∞Γ√
2

(
c
3
2x

3m−1
2

√
ν∞

)
c2

ν∞
x2m−1e−αθ(αθ′)f ′′

2
(η)

=
µ∞
ν∞

c2x2m−1e−αθf ′′′(η)− µ∞
ν∞

c2x2m−1e−αθ(αθ′)f ′′(η) +
µ∞
ν∞

c2x2m−1e−αθδf ′′(η)f ′′′(η)

− µ∞
ν∞

Γ√
2

(
c
3
2x

3m−1
2

√
ν∞

)
c2x2m−1e−αθ(αθ′)f ′′

2
(η)

=
µ∞
ν∞

c2x2m−1e−αθf ′′′(η)− µ∞
ν∞

c2x2m−1e−αθ(αθ′)f ′′(η) +
µ∞
ν∞

c2x2m−1e−αθδf ′′(η)f ′′′(η)

− 1

2

µ∞
ν∞

(√
2c

3
2x

3m−1
2

√
ν∞

)
Γc2x2m−1e−αθ(αθ′)f ′′

2
(η)

=
µ∞
ν∞

c2x2m−1e−αθf ′′′(η)− µ∞
ν∞

c2x2m−1e−αθ(αθ′)f ′′(η) +
µ∞
ν∞

c2x2m−1e−αθδf ′′(η)f ′′′(η)

− 1

2

µ∞
ν∞

c2x2m−1e−αθ(αθ′)δf ′′
2
(η)

=
µ∞
ν∞

e−αθc2x2m−1

[
− δ

2
αθ′f ′′

2
(η) +−αθ′f ′′(η) + f ′′′(η) + δf ′′(η)f ′′′(η)

]
= ρ∞e

−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)− αθ′f ′′(η)(1 +

δ

2
f ′′(η))

]
= ρ∞e

−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)

− αθ′f ′′(η)(1 +
δ

2
f ′′)(η)

]
= ρ∞e

−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)

− αθ′f ′′(η)(1 +
δ

2
f ′′(η))

]
where δ = (

√
2c

3
2x

3m−1
2

√
ν∞

)Γ.

Adding (3.13) and (3.14), left side of (3.2) becomes

u
∂u

∂x
+ v

∂v

∂y
=

[
c
5
2

( 1

(ν∞)
1
2

)
x

5m−3
2 yf ′(η)

(
m− 1

2

)
f ′′(η) + c2mx2m−1f ′

2
(η)

]

+

[
−

(
c
5
2

(ν∞)
1
2

)
x

5m−3
2 yf ′(η)

(
m− 1

2

)
f ′′(η)

− c2x2m−1f(η)

(
m+ 1

2

)
f ′′(η)

]
= c2mx2m−1f ′

2
(η)− c2x2m−1f(η)

(
m+ 1

2

)
f ′′(η). (3.15)
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Now the right side of (3.2), becomes

1

ρ∞

∂

∂y

(
µ(T )

∂u

∂y
+ µ(T )

Γ√
2

(
∂u

∂y

)2
)

= e−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)− αθ′f ′′(η)(1 +

δ

2
f ′′(η))

]
. (3.16)

Now comparing (3.15) and (3.16), we get

f′
2
(η)c2mx2m−1 − c2 x2m−1f(η)f′′(η)

= e−αθc2x2m−1

[
f ′′′(η)(1 + δf ′′(η)) − α

(
1 +

δ

2
f ′′(η)

)
f ′′(η)θ′(η)

]
.

⇒
(
mf ′

2
(η)− f(η)

(
m+ 1

2

)
f ′′(η)

)
c2x2m−1

= e−αθc2x2m−1

[
− αf ′′(η)

(
1 +

δ

2
f ′′(η)

)
θ′(η) + (1 + δf ′′(η))f ′′′(η)

]
. (3.17)

⇒ − f(η)

(
m+ 1

2

)
f ′′(η) +mf ′

2
(η) = e−αθ

[
f ′′′(η)(1 + δf ′′(η))

− αθ′f ′′(η)

(
1 +

δ

2
f ′′(η)

)]
⇒ e−αθ

(
f ′′′(η)(1 + δf ′′(η))− α

(
1 +

δ

2
f ′′(η)

)
θ′(η)f ′′(η)

)
+ f(η)

(
m+ 1

2

)
f ′′(η)−mf ′2(η) = 0. (3.18)

Next, to find the dimensionless form of (3.3), the procedure is as follows

• θ(η) =
T − T∞
Tw − T∞

,

⇒ T − T∞ = θ(η)(Tw − T∞)

= θ(η)(T∞ +Axr − T∞).

⇒ T = T∞ + θ(η)Axr.

• ∂T

∂x
=

∂

∂x
(T∞ + θ(η)Axr)

=
∂

∂x
(T∞) +

∂

∂x
(Aθ(η)xr),

= A
∂

∂x
(θ(η)xr) = A

[
θ(η)rxr−1 + xrθ′(η)

(
c

ν∞

) 1
2

y

(
m− 1

2

)
x

m−3
2

]
= Arxr−1θ(η) +A

(
c

ν∞

) 1
2
(
m− 1

2

)
yx

2r+m−3
2 θ′(η). (3.19)

• ∂T

∂y
=

∂

∂y
(T∞ + θ(η)Axr)
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=
∂

∂y
(T∞) +

∂

∂y
(Axrθ(η))

= Axr
(
c

ν∞

) 1
2

x
m−1

2 θ′(η)

= A

(
c

ν∞

) 1
2

x
2r+m−1

2 θ′(η). (3.20)

• ∂2T

∂y2
= A

(
c

ν∞

) 1
2

x
2r+m−1

2 θ′′(η)

(
c

ν∞

) 1
2

x
m−1

2

= A

(
c

ν∞

)
xr+m−1θ′′(η).

•
(
∂u

∂y

)2

=

(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2

)2

f ′′
2
(η). (3.21)

• qr = −4

3

δ∗

k∗
∂T 4

∂y

= −4

3

δ∗

k∗
∂

∂y
(4T 3
∞T − 3T 4

∞)

= −4

3

δ∗

k∗
(4T 3
∞
∂T

∂y
)

= −16

3

δ∗

k∗
T 3
∞
∂T

∂y
.

• ∂qr
∂y

= −16

3

δ∗

k∗
T 3
∞
∂2T

∂y2

= −16

3

δ∗

k∗
T 3
∞
Ac

ν∞
xr+m−1θ′′(η). (3.22)

Using (3.19) and (3.20) in the left side of (3.3), we get

u
∂T

∂x
+ v

∂T

∂y
= cxmf ′(η)Arxr−1θ(η) + cxmf ′(η)A

(
c

ν∞

) 1
2
(
m− 1

2

)
yx

2r+m−3
2 θ′(η)

+

[
− c

(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η)

]
[
A

(
c

ν∞

) 1
2

x
2r+m−1

2 θ′(η)

]
= Acrxm+r−1f ′(η)θ(η) +Ac

3
2

(
1

(ν∞)
1
2

)
x

3m+2r−3
2

(
m− 1

2

)
yf ′(η)θ′(η)

−Ac
3
2

(
1

(ν∞)
1
2

)
x

3m+2r−3
2

(
m− 1

2

)
yf ′(η)θ′(η)

−Ac
(
m+ 1

2

)
xr+m−1f(η)θ′(η)

= Acrxm+r−1f ′(η)θ(η)−Ac
(
m+ 1

2

)
xr+m−1f(η)θ′(η). (3.23)
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Now the terms on the right side of (3.3) has been converted into the dimensionless form

as flollows.

• 1

ρ∞cp

∂

∂y

(
K(T )

∂T

∂y

)
=

1

ρ∞cp

∂

∂y

(
(K∞ +K∞εθ(η))

(
A

(
c

ν∞

) 1
2

x
2r+m−1

2 θ′(η)

))

=
1

ρ∞cp

[
∂

∂y

(
K∞

(
Ax

2r+m−1
2

(
c

ν∞

) 1
2

θ′(η)

))]

+
∂

∂y

[
K∞εθ(η)

(
Ax

2r+m−1
2

(
c

ν∞

) 1
2

θ′(η)

)]

=
1

ρ∞cp

[
K∞Ax

2r+m−1
2

(
c

ν∞

) 1
2

θ′′(η)

(
c

ν∞

) 1
2

x
m−1

2

+K∞εAx
2r+m−1

2

(
c

ν∞

) 1
2

(
θ(η)θ′′(η)

(
c

ν∞

) 1
2

x
m−1

2 + θ′(η)θ′(η)

(
c

ν∞

) 1
2

x
m−1

2

)]
=

1

ρ∞cp

[
K∞A

(
c

ν∞

)
xr+m−1θ′′(η) +K∞εθ(η)Axr+m−1

(
c

ν∞

)
θ(η)θ′′(η)

+K∞εAx
r+m−1

(
c

ν∞

)
θ′

2
(η)

]
=

K∞Ac

ρ∞cpν∞
xr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

=
K∞Ac

cpµ∞
xr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

=
1

pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η)). (3.24)

• µ

ρ∞cp

(
1 +

Γ√
2

∂u

∂y

)(
∂u

∂y

)2

=
µ

ρ∞cp

(
1 +

Γ√
2
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)

)(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 )

)2

f ′′
2
(η)

=
2

2

µ

ρ∞cp

(
1 +

Γ√
2
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2 f ′′(η)

)(
c
3
2

(
1

(ν∞)
1
2

)
x

3m−1
2

)2

f ′′
2
(η)

=
µ

ρ∞cp

(
1 +

√
2

2

c
3
2

√
ν∞

x
3m−1

2 Γf ′′(η)

)(
c3

v∞
x3m−1

)
f ′′

2
(η)

=
µ

ρ∞cp

(
1 +

1

2

(√
2c

3
2x

3m−1
2

√
ν∞

)
Γf ′′(η)

)(
c3

ν∞
x3m−1

)
f ′′

2
(η)

=
µ

ρ∞cp

(
1 +

δ

2
f ′′(η)

)
c3

ν∞
x3m−1f ′′

2
(η)

=
µ

ρ∞cpν∞
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)

=
µ∞e

−αθ

ρ∞cpν∞
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)
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=
µ∞e

−αθ

µ∞cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)

=
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η). (3.25)

• 1

ρ∞cp

∂qr
∂y

=
1

ρ∞cp

(
−16

3

δ∗

k∗
T 3
∞
Ac

ν∞
xr+m−1θ′′(η)

)
= − 1

ρ∞cpν∞

16

3

δ∗

k∗
T 3
∞Acx

r+m−1θ′′(η). (3.26)

Using (3.24)-(3.26) the right side of (3.3), becomes

1

ρ∞cp

∂

∂y

(
k(T )

∂T

∂y

)
+
µ(T )

ρ∞cp

(
1 +

Γ√
2

∂u

∂y

)(
∂u

∂y

)2

− 1

ρ∞cp

∂qr
∂y

=
1

Pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)

−
(
− 1

ρ∞cpν∞

16

3

δ∗

k∗
T 3
∞Acx

r+m−1θ′′(η)

)
=

1

Pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′2(η) +

1

ρ∞cpν∞

16

3

δ∗

k∗
T 3
∞Acx

r+m−1θ′′(η)

=
1

Pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)

+
1

ρ∞cpν∞

16

3

δ∗

k∗
T 3
∞Acx

r+m−1θ′′(η)

=
1

Pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η) +

K∞
µ∞cp

16δ∗T 3
∞

3K∞k∗
Acxr+m−1θ′′(η)

=
1

Pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η) +

1

Pr
RAcxr+m−1θ′′(η). (3.27)

Now comparing (3.23) and (3.27), we get

Acrxm+r−1f ′(η)θ(η)−Ac
(
m+ 1

2

)
xr+m−1f(η)θ′(η)

=
1

Pr
Acxr+m−1(θ′′(η) + εθ′

2
(η) + εθ(η)θ′′(η))
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+
e−αθ

cp
c3x3m−1f ′′

2
(η)

(
1 +

δ

2
f ′′(η)

)
+

1

Pr
RAcxr+m−1θ′′(η)

⇒ − f(η)

(
m+ 1

2

)
θ′(η) + rf ′(η)θ(η) =

1

Pr
Rθ′′(η)

+
e−αθc2

Acp
x2m−r

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η) +

1

Pr
(εθ(η)θ′′(η) + θ′′(η) + εθ′

2
(η))

⇒ 1

Pr
(εθ(η)θ′′(η) + θ′′(η) + εθ′

2
(η)) +

1

Pr
Rθ′′(η)− rθ(η)f ′(η) + f(η)

(
m+ 1

2

)
θ′(η)

+ Ec

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)e−αθ = 0

⇒ 1

Pr
(εθ′

2
(η) + (1 + εθ(η) +R)θ′′(η) + f(η)

(
m+ 1

2

)
θ′(η)− rf ′(η)θ(η)

+ Ecf ′′
2
(η)

(
1 +

δ

2
f ′′(η)

)
e−αθ = 0. (3.28)

The BCs are converted into non-dimensionless form through the following procedure

• u = cxm, at y = 0.

⇒ cxmf ′(η) = cxm,

⇒ f ′(η) = 1, at η = 0.

⇒ f ′(η) = 1, at η = 0.

⇒ f ′(0) = 1.

• v = 0, at y = 0.

⇒ − c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η) = 0,

at y = 0.

⇒ − (cν∞)
1
2

(
m+ 1

2

)
x

m−1
2 f(0) = 0, at η = 0.

⇒ f(0) = 0.

• T = T∞ +Axr, at y = 0.

⇒ T − T∞ = Axr, at y = 0.

⇒ (Tw − T∞)θ(η) = Axr, at η = 0.

⇒ Axrθ(0) = Axr,

⇒ θ(0) = 1.

• u→ 0, as y →∞.

⇒ cxmf ′(η)→ 0, as η →∞.
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⇒ f ′(η)→ 0, as η →∞.

• T → T∞, as y →∞.

⇒ T − T∞ = (Tw − T∞)θ(η), as η →∞.

⇒ T = T∞ + (Tw − T∞)θ(η), as η →∞.

⇒ T → T∞, as η →∞.

⇒ T∞ + (Tw − T∞)θ(η)→ T∞, as η →∞.

⇒ θ(η)→ 0, as η →∞.

Hence the converted ODEs are in the following form

e−αθ
(

(1 + δf ′′(η))f ′′′(η)− αf ′′(η)θ′(η)

(
1 +

δ

2
f ′′(η)

))
+ f(η)

(
m+ 1

2

)
f ′′(η)−mf ′2(η) = 0. (3.29)

1

Pr
(εθ′

2
(η) + (1 +R+ εθ(η))θ′′(η)) +−rf ′(η)θ(η) + Ec

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)e−αθ

+

(
m+ 1

2

)
θ′(η)f(η) = 0. (3.30)

The associated BCs in the dimensionless form:

θ(0) = 1, f(0) = 0, f ′(0) = 1,

θ → 0, f ′ → 0 at η →∞.

 (3.31)

Different parameters used in (3.29) and (3.30) are:

R =
16δ∗T 3

∞
3K∞k∗

, δ =

(√
2c

3
2x

3m−1
2

√
ν∞

)
Γ, P r =

µ∞cp
K∞

Ec =
U2
w

cp(Tw − T∞)
=
c2x2m−r

Acp
, r = 2m =

2

3
.

The local skin friction is given as

Cfx =
(τw)y=0

ρ∞U2
w

. (3.32)
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To get the dimensionless form of Cfx the following procedure is worked out

τw = µ

(
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2
)

(3.33)

Cfx =

µ

(
∂u
∂y + Γ√

2

(
∂u
∂y

)2
)
y=0

ρ∞U2
w

=
µ∂u∂y

(
1 + Γ√

2
∂u
∂y

)
y=0

ρ∞c2x2m

=

µ∞e
−αθ(0)

(
c
3
2

ν
1
2∞

)
x

3m−1
2 f ′′(0)

ρ∞c2x2m

(
1 +

Γ√
2

(
c
3
2

ν
1
2∞

)
x

3m−1
2 f ′′(0)

)

=
ρ∞
ρ∞

ν
1
2∞c
−1
2 x

−(m+1)
2 e−αθ(0)f ′′(0)

(
1 +

Γ√
2

(
c
3
2

ν
1
2∞

)
x

3m−1
2 f ′′(0)

)

=
ν

1
2∞

c
1
2x

(m+1)
2

e−αθ(0)f ′′(0)

(
−2

2
− 2Γ

2
√

2

(
c
3
2

ν
1
2∞

)
x

3m−1
2 f ′′(0)

)

= − 1

Re
1
2
x

e−αθ(0)f ′′(0)

1 +

(√
2c

3
2 x

3m−1
2

ν
1
2∞

)
Γ

2
f ′′(0)


= −Re

−1
2
x

(
1 +

δ

2
f ′′(0)

)
e−αθ(0)f ′′(0) (3.34)

Reynolds number is defined as Re = Uwx
ν∞

.

Local Nusselt number is defined as

Nux =
xqw

K∞(Tw − T∞)
. (3.35)

To get the dimensionless form of Nux the following procedure is followed

qw = −
(
K +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

)
y=0

(3.36)

Nux = −
x
(
K + 16σ∗T 3

∞
3k∗

)(
∂T
∂y

)
K∞(Tw − T∞)

= −
x
(
K + 16σ∗T 3

∞
3k∗

)
K∞(Tw − T∞)

(
∂T

∂y

)
y=0

= −
x
(
K + 16σ∗T 3

∞
3k∗

)
K∞(Tw − T∞)

(Tw − T∞)

(
c

ν∞

) 1
2

x
m−1

2 θ′(0)
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= −

(
K∞(1 + εθ(0)) + 16σ∗T 3

∞
3k∗

)
K∞

(
c

ν∞

) 1
2

x
m+1

2 θ′(0)

= −K∞
K∞

(
1 + εθ(0) +

16σ∗T 3
∞

3k∗K∞

)(
c

ν∞

) 1
2

x
m+1

2 θ′(0)

= −Re
1
2
x (1 +R+ εθ(0)) θ′(0). (3.37)

3.3 Solution Methodology

In this section, to get the approximate solution of the ordinary differential equations

(3.29)-(3.30) along with the boundary conditions (3.31), the shooting method has been

used. To get the approximate results, the domain of the problem has been taken as [0,

η∞] instead of [0, ∞), where η∞ is an appropriate finite positve real number. First of

all, we need to convert these equations into a system of first order differential equations.

Let us use the following notations.

f = h1, f
′ = h′1 = h2, f

′′ = h′2 = h3, f
′′′ = h′3

θ = h4, θ
′ = h′4 = h5, θ

′′ = h5.

Using the above notations, the system of equations (3.29)-(3.30) with the boundary

conditions (3.31) is transformed into the following system of five first order differential

equation

h′1 = h2, h1(0) = 0,

h′2 = h3, h2(0) = 1,

h′3 =
eαθ

1 + dh3

[
α

eαθ
h5h3

(
1 +

δ

2
h3

)
−
(
m+ 1

2

)
h1h3 +mh2

2

]
,

h3(0) = p,

h′4 = h5, h4(0) = 0,

h′5 =
Pr

1 +R+ εh4

[
rh2h4 −

ε

Pr
h2

5 −
(
m+ 1

2

)
h1h5

− Ec

eαh4

(
1 +

δ

2
h3

)
h2

3

]
, h5(0) = q.
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In the above IVP, the missing conditions p and q, are to be chosen to satisfy the following

relation.

h2(p, q) = 0, (3.38)

h4(p, q) = 0. (3.39)

Here h2(p, q) and h4(p, q) are the values of h2 and h4 at η = η∞ for the chosen values

of the missing conditions p and q. Newton’s method with the following itrative scheme

will be used to solve the above two equations with two variables.

pn+1

qn+1

 =

pn
qn

−
∂h2∂p ∂h2

∂q

∂h4
∂p

∂h4
∂q

−1

(pn,qn)

h2

h4


(pn,qn)

(3.40)

To find the partial derivative of h2 and h4, the following notations have been introduce.

∂h1

∂p
= h6,

∂h2

∂p
= h7,

∂h3

∂p
= h8,

∂h4

∂p
= h9,

∂h5

∂p
= h10.

∂h1

∂q
= h11,

∂h2

∂q
= h12,

∂h3

∂q
= h13,

∂h4

∂q
= h14,

∂h5

∂q
= h15.

Using the above notations in (3.40), we get

pn+1

qn+1

 =

pn
qn

−
h7 h12

h9 h14

−1

(pn,qn)

h2

h4


(pn,qn)

(3.41)

The itrative proccess (3.41) will be continued untill the following criteria is met,

max {|h2(p, q)|, |h4(p, q)|} < ε,

where ε has been taken as 10−10.

Now differentiate the last system of five equations with respect to p and q, we get the
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following equations:

h′6 = h7, h6(0) = 0,

h′7 = h8, h7(0) = 0,

h′8 =
(1 + δh3)αh9e

αh4 − eαh4(δh8)

(1 + δh3)2

[
α

eαh4
h5h3

(
1 +

δ

2
h3

)
−
(
m+ 1

2

)
h1h3 +mh2

2

]
+

eαh4

1 + δh3

[
αeαh4(−αh9)h5h3

(
1 +

δ

2
h3

)
+

α

eαh4
h10h3

(
1 +

δ

2
h3

)
+

α

eαh4
h5h8

(
1 +

δ

2
h3

)
+

α

eαh4
h5h3

(
δ

2
h8

)
−
(
m+ 1

2

)
(h1h8 + h6h3) + 2mh2h7

]
, h8(0) = 1,

h′9 = h10, h9(0) = 0,

h′10 = − Prε

(1 +Rεh4)2
h9

[
rh2h4 −

(
m+ 1

2

)
h1h5 −

Ec

eαh4
(
1 + δ

2h3

)h2
3

]
+

Pr

1 +Rεh4

[
r(h2h9 + h7h4)− 2ε

Pr
h5h10 −

(
m+ 1

2

)
(h1h10 + h6h5)

− Eceαh4(−αh9)

(
1 +

δ

2
h3

)
h2

3 −
Ec

eαh4

(
δ

2
h8

)
h2

3

− 2Ec

eαh4

(
1 +

δ

2
h3

)
h3h8

]
, h10(0) = 0,

h′11 = h12, h11(0) = 0,

h′12 = h13, h12(0) = 0,

h′13 =
(1 + δh3)αh14e

αh4 − eαh4(δh13)

(1 + δh3)2

[
α

eαh4
h5h3

(
1 +

δ

2
h3

)
−
(
m+ 1

2

)
h1h3 +mh2

2

]
+

eαh4

1 + δh3

[
αe−αh4(−αh14)h5h3

(
1 +

δ

2
h3

)
+

α

eαh4
h15h3

(
1 +

δ

2
h3

)
+

α

eαh4
h5h13

(
1 +

δ

2
h3

)
+

α

eαh4
h5h3

(
δ

2
h13

)
−
(
m+ 1

2

)
(h1h13 + h11h3) + 2mh2h12

]
,

h13(0) = 0,

h′14 = h15, h14(0) = 0,

h′15 = − Prεh14

(1 +Rεh4)2

[
rh2h4 −

εh2
5

Pr
−
(
m+ 1

2

)
h1h5 −

Ec

eαh4

(
1 +

δ

2

)
h2

3

]
+

Pr

(1 +R+ εh4)

[
r(h2h14 + h12h4)− 2ε

Pr
h5h15 −

(
m+ 1

2

)
(h1h15 + h11h5)

− Ece−αh4(−αh14)

(
1 +

δ

2
h3

)
h2

3 −
Ec

eαh4

(
δ

2
h13

)
h2

3 −
2Ec

eαh4

(
1 +

δ

2
h3

)
h3h13

]
,

h15(0) = 1.
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3.4 Discussion on Tables and Graphs

In this section, the numerical solutions are addressed in detail for velocity and temper-

ature profiles, using tables and graphs. For the verification of the code, the obtained

results are compared with those of Gorla and Sidawi [32] in Table 3.1. For the obser-

vation of the effect of different physical parameters like Williamson fluid parameter δ,

viscosity parameter α, radiation parameter R, thermal conductivity ε, Eckert number

Ec on skin friction 1
2(Rex)

1
2Cfx and Nusselt number (Rex)−

1
2Nux, the calculations are

executed numericaly and presented in Table 3.2. For the rising values of α, the local

skin friction and local Nusselt number decrease. By increasing the values of Williamson

parameter δ, the local skin friction and local Nusselt number decrease. Similarly in-

creaing the values of ε, the local skin friction decreases while the local Nusselt number is

increased. By increasing the values of R and Ec, the local skin friction and local Nusselt

number decrease. In this table, Ip and Iq are the intervals from which thee missing

conditions p and q can be chosen.

Figure 3.2 shows the behaviour of velocity f ′(η) for various values of α. By increasing the

values of α, the velocity f ′(η) is found to decrease. Figure 3.3 shows the representation of

temperature θ(η) for different values of α. By increasing the value of α, the temperature

θ(η) increases, which is an understandable behaviour. Figure 3.4 represents the velocity

f ′(η) for different values of Williamson parameter δ. By improving the values of δ, the

velocity distribution f ′(η) is found to decrease. In Figure 3.5, it is observed that by

increasing the values of δ, the temperature θ(η) shows an increasing behaviour.

Figure 3.6 shows the behaviour of the temperature field θ(η) for the values of thermal 

conductivity ε. By rising the values of ε, the temperature θ(η) shows a natural increasing 

behaviour. Figure 3.7 shows the behaviour of the temperature θ(η) for the values of R. 

The temperature θ(η) increases by rising the values of R. Actually with an increase in 

the thermal radiation, the heat transfer increase because of which the temperature θ(η) 

icreases. Figure 3.8 represents the temperature θ(η) for various values of the Eckert 

number Ec, with the constant values of the rest of the parameters. By increasing the 

values of Ec, the temperature θ(η) is found to increase.
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Table 3.1: Comparison of present Nusselt number NuxRe
− 1

2
x with that of Gorla and

Sidawi [32] for various value of Pr when δ = α = ε = R = Ec = 0

Pr Gorla and Sidawi [32] Present study

20.0 3.35391 3.353902

7.00 1.89546 1.895453

2.00 0.91142 0.911358

0.20 0.16912 0.169117

0.07 0.06562 0.065531

Table 3.2: Values of (Rex)
1
2Cfx and (Rex)−

1
2Nux for values of α, δ, ε, R, and Ec with

m = 1
3 , r = 2

3 , P r = 2.0

α δ ε R Ec (Rex)
1
2Cfx (Rex)

−1
2 Nux Ip Iq

0.5 0.2 0.2 0.2 0.2 0.546574 1.27389 [-0.9,-0.6] [-0.9,-0.5]

0.0 0.659036 1.33147 [-0.7,-0.1] [-1.3,-0.1]

1.0 0.439825 1.20470 [-0.9,-0.8] [-0.9,-0.8]

0.2 0.546574 1.27389 [-0.9,-0.6] [-0.9,-0.7]

0.0 0.567824 1.28575 [-0.9,-0.8] [-0.9,-0.8]

0.5 0.506501 1.24862 [-0.9,-0.8] [-1.0,-0.1]

0.2 0.546574 1.27389 [-0.9,-0.6] [-0.9,-0.8]

0.0 0.549230 1.21855 [-0.9,-0.6] [-0.9,-0.7]

0.5 0.543218 1.34923 [-0.9,-0.7] [-0.7,-0.1]

0.0 0.549638 1.19305 [-0.9,-0.6] [-0.9,-0.5]

0.5 0.542856 1.37819 [-0.9,-0.7] [-0.9,-0.6]

1.0 0.538195 1.51929 [-0.9,-0.5] [-0.9,-0.4]

0.2 0.0 0.548241 1.36146 [-0.9,-0.7] [-0.9,-0.6]

0.2 0.546574 1.27389 [-0.7,-0.6] [-0.9,-0.5]

0.5 0.544103 1.14333 [-0.9,-0.7] [-0.8,-0.1]
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Figure 3.2: Velocity f ′(η) for the values of α with δ = ε = R = Ec = 0.2,
m = 1

3 , P r = 2.0
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Figure 3.3: Temperature θ(η) for the values of α with δ = ε = Ec
= R = 0.2, Pr = 2.0, m = 1
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Figure 3.4: Velocity f ′(η) for the of values δ with ε = Ec = R = 0.2, Pr = 2.0,
α = 0.5, m = 1
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Figure 3.5: Temperature θ(η) for various values δ with ε = Ec = R = 0.2,
α = 0.5, P r = 2.0, m = 1
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Figure 3.6: Temperature θ(η) for various values of ε with δ = Ec = R = 0.2,
Pr = 2.0, m = 1

3

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

 R = 0.0
 R = 0.3
 R = 0.5
 R = 1.0

Figure 3.7: Temperature θ(η) for various values of R with δ = ε = Ec = 0.2,
Pr = 2.0, m = 1
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Figure 3.8: Temperature θ(η) for various values of Ec with δ = ε = Ec = 0.2,
Pr = 2.0, m = 1
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Chapter 4

Williamson fluid flow with MHD,

Joule Heating, Concentration and

Chemical Reaction

4.1 Introduction

This chapter discuses an extension of the mathematical model discussed in Chapter

3. The MHD term is in the momentum equation while the Joule heating is added

to the energy equation. Furthermore, the concentration equation is also incorporated

along with the chemical reaction. The governing nonlinear partial differential equations

are converted into a system of dimensionless ordinary differential equations by using

some appropriate similiarity transformations. In order to solve the ODEs, the shooting

method is applied. For the numerical computations, the computational software MAT-

LAB is opted. At the end of this chapter, the numerical results are discused for various

parameters affecting the velocity, temperature and concentration profiles.

4.2 Mathematical Modeling

It has been aimed to analyse a 2-D Williamson fluid flowing over a nonlinearly stretching

sheet. In the model, u and v are the velocity components in the xy-direction, respec-

tively. In addition, the concentration of fluid is also examined with the assistance of the

35
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Figure 4.1: Flow over a nonlinearly stretching sheet is seen in this diagram.

concentration equation under the effect of chemical reaction. The system of equtions is

as follows

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ∞

∂

∂y

(
µ(T )

∂u

∂y
+ µ(T )

Γ√
2

(
∂u

∂y

)2
)
− σB2(x)

ρ
u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρ∞cp

∂

∂y

(
k(T )

∂T

∂y

)
+
µ(T )

ρ∞cp

(
1 +

Γ√
2

∂u

∂y

)(
∂u

∂y

)2

− 1

ρ∞cp

∂qr
∂y

+
σB2(x)

ρcp
u2, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k1(x)(C − C∞). (4.4)

The associated BCs are:

u = cxm, Tw(x) = T∞ +Axr, v = 0 at y = 0

T → T∞, u→ 0, C → C∞ as y →∞.

 (4.5)
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For the conversion of (4.1)-(4.3) into the system of ODEs, the following similirity trans-

formations have been used

η =

(
cxm−1

ν∞

) 1
2

y, ψ(x, y) = (cxm−1ν∞)
1
2 f(η),

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.

 (4.6)

The identical satisfaction of (4.1) is not different from that of the continuity equation

in Chapter 3. To convert (4.2) into the dimensionless form, the following procedure has

been incorporated

ψ = (cxm+1ν∞)
1
2 f(η) = (cν∞)

1
2x

m+1
2 f(η)

• u =
∂ψ

∂y
= (cν∞)

1
2x

m+1
2 f ′(η)

(
c

ν∞

) 1
2

x
m−1

2 = cxmf ′(η). (4.7)

• v = −∂ψ
∂x

= −c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η)

= −c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η). (4.8)

To get the left side of (4.2), we proceed as follows,

u
∂u

∂x
+ v

∂v

∂y
=

[
c
5
2

(
1

(ν∞)
1
2

)(
m− 1

2

)
x

5m−3
2 yf ′(η)f ′′(η) + c2mx2m−1f ′

2
(η)

]

+

[
− c

5
2

(ν∞)
1
2

x
5m−3

2 yf ′(η)

(
m− 1

2

)
f ′′(η)

− c2x2m−1f(η)

(
m+ 1

2

)
f ′′(η)

]
= c2mx2m−1f ′

2
(η)− c2x2m−1f(η)

(
m+ 1

2

)
f ′′(η). (4.9)

Next, to get the right side of (4.2), we convert (4.2) into the dimensionless form, we

need only the following conversion. The rest of the conversions are already included in

the last chapter,

σB2

ρ
u =

σB2

ρ
cxmf ′(η)

=
σ(B0x

m−1
2 )2

ρ
cxmf ′(η)
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=
σB2

0x
m−1

ρ
cxmf ′(η)

=
σB2

0x
2m−1

ρ
cf ′(η). (4.10)

As a result, the right side of (4.2) gets the following form:

1

ρ∞

∂

∂y

(
µ(T )

∂u

∂y
+ µ(T )

Γ√
2

(
∂u

∂y

)2
)
− σB2

ρ
u

=
1

ρ∞

µ∞
ν∞

e−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)

− αθ′f ′′(η)(1 +
δ

2
f ′′)(η)

]
− σB2

0x
2m−1c

ρ
f ′(η)

=
1

ρ∞
ρ∞e

−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)

− αθ′f ′′(η)(1 +
δ

2
f ′′(η))

]
− σB2

0x
2m−1c

ρ
f ′(η)

= e−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)− αθ′f ′′(η)(1 +

δ

2
f ′′(η))

]
− σB2

0x
2m−1c

ρ
f ′(η). (4.11)

Comparing (4.9) and (4.11), we get

c2mx2m−1f ′
2
(η)− c2m+ 1

2
x2m−1f(η)f ′′(η)

= e−αθc2x2m−1

[
(1 + δf ′′(η))f ′′′(η)− αθ′f ′′(η)(1 +

δ

2
f ′′(η))

]
− σB2

0x
2m−1c

ρ
f ′(η).

⇒ c2x2m−1

(
−f(η)

(
m+ 1

2

)
f ′′(η)

)
+mf ′

2
(η)

= e−αθc2x2m−1

[
− α

(
1 +

δ

2
f ′′(η)

)
θ′f ′′(η) + f ′′′(η)

(
1 + δf ′′(η)

) ]
− σB2

0x
2m−1c

ρ
f ′.

⇒ mf ′
2
(η)−

(
m+ 1

2

)
f(η)f ′′(η) = e−αθ

[
f ′′′(η)

(
1 + δf ′′(η)

)
− αf ′′(η)

(
1 +

δ

2
f ′′
)
θ′(η)

]
− σB2

0

ρc
f ′(η).

⇒ e−αθ
(

(1 + δf ′′(η))f ′′′(η)− f ′′(η)αf ′′(η)

(
1 +

δ

2
θ′(η)

))
−mf ′2(η)−M2f ′(η)

+ f(η)

(
m+ 1

2

)
f ′′(η) = 0. (4.12)
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Next, the left side of (4.3) takes the following dimensionless forms

u
∂T

∂x
+ v

∂T

∂y
= Acrxm+r−1f ′(η)θ(η)−Ac

(
m+ 1

2

)
xr+m−1f(η)θ′(η). (4.13)

To convert the right side of (4.3), we need only the following conversion.

σB2(x)

ρcp
u2 =

σB2
0

ρcp

(
cxmf ′(η)

)2
=
σB2

ρcp
c2x2mf ′

2
(η)

=
σB2

0x
m−1

ρcp
x2mc2f ′

2
(η)

=
σB2

0

ρcp
c2x3m−1f ′

2
(η). (4.14)

The conversion of the rest of the terms into the dimensionless form is already discussed

in the previous chapter. Thus the right side of (4.3) becomes

1

ρ∞cp

∂

∂y

(
k(T )

∂T

∂y

)
+
µ(T )

ρ∞cp

(
1 +

Γ√
2

∂u

∂y

)(
∂u

∂y

)2

− 1

ρ∞cp

∂qr
∂y

+
σB2(x)

ρcp
u2

=
1

Pr
Acxr+m−1

(
εθ(η)θ′′(η) + θ′′(η) + εθ′

2
(η)
)

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η) +

1

Pr
RAcxr+m−1θ′′(η)

+
σB2

0

ρcp
c2x3m−1f ′

2
(η). (4.15)

Now comparing (4.13) and (4.15), we get

Acrxm+r−1f ′(η)θ(η)−Acθ′(η)(
m+ 1

2 ) x
r+m−1f(η)

=
1

Pr
Acxr+m−1

(
εθ′′(η)θ(η) + θ′′(η) + εθ′

2
(η)
)

+
e−αθ

cp
c3x3m−1

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)

+
1

Pr
RAcxr+m−1θ′′(η) +

σB2
0

ρcp
c2x3m−1f ′(η).

⇒ rf ′(η)θ(η)− f(η)

(
m+ 1

2

)
θ′(η)

=
1

Pr

(
εθ′′(η)θ(η) + θ′′(η) + εθ′

2
(η)
)

+
e−αθc2

Acp
x2m−r

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)

+
1

Pr
Rθ′′(η) +

σB2
0

ρcp

c2x2m−r

Ac
f ′

2
(η).
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⇒ 1

Pr

(
εθ′′(η)θ(η) + θ′′(η) + εθ′

2
(η)
)
− rθ(η)f ′(η) +

1

Pr
Rθ′′(η) + f(η)

(
m+ 1

2

)
θ′(η)

+M2Ecf ′
2
(η) + Ecf ′′

2
(η)

(
1 +

δ

2
f ′′(η)

)
e−αθ = 0,

⇒ 1

Pr

(
εθ′

2
(η) + (1 + εθ(η))θ′′(η) +R

)
+ f(η)

(
m+ 1

2

)
θ′(η)− f ′(η)rθ(η)

+ Ec

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)e−αθ +M2Ecf ′

2
(η) = 0. (4.16)

To get the dimensionless form of (4.4), we proceed as follows

C = C∞ + φ(η)(Cw − C∞).

• ∂C

∂x
= (Cw − C∞)φ′(η)

(
c

ν∞

) 1
2

y

(
m− 1

2

)
x

m−1
2
−1

= (Cw − C∞)

(
c

ν∞

) 1
2
(
m− 1

2

)
x

m−3
2 yφ′(η).

• u∂C
∂y

=
(
cxmf ′(η)

) [
(Cw − C∞)

(
c

ν∞

) 1
2
(
m− 1

2

)
x

m−3
2 yφ′(η)

]
=

c
3
2

(ν∞)
1
2

(Cw − C∞)

(
m− 1

2

)
x

3m−3
2 yf ′(η)φ′(η). (4.17)

• ∂C

∂y
= (Cw − C∞)φ′(η)

(
c

ν∞

) 1
2

x
m−1

2 .

• v
∂C

∂y
=

(
−c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2x

m−1
2

(
m+ 1

2

)
f(η)

)
(

(Cw − C∞)φ′(η)

(
c

ν∞

) 1
2

x
m−1

2

)

= − (c)
3
2

(ν∞)
1
2

(
m− 1

2

)
(Cw − C∞)x

3m−3
2 yf ′(η)φ′(η)

− c(Cw − C∞)xm−1

(
m+ 1

2

)
f(η)φ′(η). (4.18)

Adding (4.17) and (4.18), we get the left side of (4.4), i.e.

u
∂C

∂y
+ v

∂C

∂y
= −c(Cw − C∞)xm−1

(
m+ 1

2

)
f(η)φ′(η). (4.19)

To get the right side of (4.4), the following proccess will be helpful

• ∂C

∂y
= (Cw − C∞)φ′(η)

(
c

ν∞

) 1
2

x
m−1

2
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• ∂2C

∂y2
= (Cw − C∞)

(
c

ν∞

) 1
2

x
m−1

2 φ′′(η)

(
c

ν∞

) 1
2

x
m−1

2

= (Cw − C∞)

(
c

ν∞

)
xm−1φ′′(η)

• D∂
2C

∂y2
= D(Cw − C∞)

(
c

ν∞

)
xm−1φ′′(η) (4.20)

• k1(x)(C − C∞) = −k1(x) (C∞ + φ(η)(Cw − C∞)− C∞)

= −k1(x)φ(η)(Cw − C∞). (4.21)

Adding (4.20) and (4.21), we get the right side of (4.4) which is

D
∂2C

∂y2
− k1(x(C − C∞) =

(
D(Cw − C∞)

(
c

ν∞

)
xm−1φ′′(η)

)
− (k1(x)φ(η)(Cw − C∞)) . (4.22)

Comparing (4.19) and (4.22), we get the following dimensionless form of (4.4)

− c(Cw − C∞)xm−1

(
m+ 1

2

)
f(η)φ′(η) =

(
D(Cw − C∞)

(
c

ν∞

)
xm−1φ′′(η)

)
− (k1(x)φ(η)(Cw − C∞)) .

⇒ D(Cw − C∞)

(
c

ν∞

)
xm−1φ′′(η)− k1(x)φ(η)(Cw − C∞)

+ c(Cw − C∞)xm−1

(
m+ 1

2

)
f(η)φ′(η) = 0,

⇒ φ′′(η)− ν∞
D

k1

(cxm−1)
φ(η) +

ν∞
D

(
m+ 1

2

)
f(η)φ′(η) = 0,

⇒ φ′′(η)− ScKrφ(η) + Sc

(
m+ 1

2

)
f(η)φ′(η) = 0,

⇒ φ′′(η)− ScKrφ(η) + Sc

(
m+ 1

2

)
f(η)φ′(η) = 0. (4.23)

Finally, the dimensionless form of the governing mathematical model is as follows

e−αθ

(
(1 + δf ′′(η))f ′′′(η)− αθ(η)′f ′′(η)

(
1 +

δ

2
f ′′(η)

))
+

(
m+ 1

2

)
f(η)f ′′(η)

−mf ′2(η)−M2f ′(η) = 0, (4.24)

1

Pr

(
εθ′

2
(η) + (1 +R+ εθ(η))θ′′(η)

)
+

(
m+ 1

2

)
f(η)θ′(η)− rf ′(η)θ(η)

+ Ec

(
1 +

δ

2
f ′′(η)

)
f ′′

2
(η)e−αθ +M2Ecf ′

2
(η) = 0, (4.25)
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φ′′ + Sc

(
m+ 1

2

)
f(η)φ′(η)− ScKrφ(η) = 0. (4.26)

Now, the procedure for the conversion of the boundary conditions into the dimensionless

form, has been presented below

• u = cxm, at y = 0.

⇒ u = cxmf ′(η), at η = 0.

⇒ cxm = cxmf ′(η), at η = 0.

⇒ f ′(η) = 1, at η = 0.

⇒ f ′(0) = 1.

• v = 0, at y = 0.

⇒ − c
(
m− 1

2

)
xm−1yf ′(η)− (cν∞)

1
2

(
m+ 1

2

)
x

m−1
2 f(η) = 0,

at η = 0.

⇒ − (cν∞)
1
2

(
m+ 1

2

)
x

m−1
2 f(0) = 0, at η = 0.

⇒ f(0) = 0.

• T = T∞ +Axr, at y = 0.

⇒ T − T∞ = Axr, at y = 0.

⇒ (Tw − T∞)θ(η) = Axr, at η = 0.

⇒ Axrθ(0) = Axr, at η = 0.

⇒ θ(0) = 1.

• C = Cw, at y = 0.

⇒ C∞ + φ(η)(Cw − C∞) = Cw, at η = 0.

⇒ φ(η)(Cw − C∞) = Cw − C∞, at η = 0.

⇒ φ(η) = 1, at η = 0.

⇒ φ(0) = 1.

• u→ 0, as y →∞.

⇒ cxmf ′(η)→ 0, as η →∞.

⇒ f ′(η)→ 0, as η →∞.

• T → T∞, as y →∞.
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⇒ T∞ + (Tw − T∞)θ(η)→ T∞, as η →∞.

⇒ θ(η)→ 0, as η →∞.

• C → C∞, as y →∞.

⇒ C∞ + φ(η)(Cw − C∞)→ C∞, as η →∞.

⇒ φ(η)(Cw − C∞)→ 0, as η →∞.

⇒ φ(η)→ 0, as η →∞.

Hence, the associated BCs in the dimensionless form, are:

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1

f ′ → 0, θ → 0, φ→ 0 at η →∞.

 (4.27)

Different parameters used in equations (4.24)-(4.26), have the following formulae

R =
16δ∗T 3

∞
3k∞k∗

, δ = (√
2c

3
2x

3m−1
2

√
ν∞ )Γ, P r =

µ∞cp
k∞

, M = −σB
2
0

ρc

Ec =
U2
w

cp(Tw − T∞)
=
c2x2m−r

Acp
, r = 2m =

2

3
, Sc =

ν∞
D
, Kr =

2k1

(n+ 1)axn−1
.

The local Sherwood number is defined as,

Shx =
xqm

Dm(Cw − C∞)
. (4.28)

To get the dimensionless form of Shx, the following procedure will be helpful

qm = −Dm

(
∂C

∂y

)
y=0

. (4.29)

Shx = − xDm

Dm(Cw − C∞)

(
∂C

∂y

)
y=0

= − x

Cw − C∞
(Cw − C∞)

(
a

ν∞

) 1
2

x
m−1

2 φ′(0)

= −x
(
a

ν∞

) 1
2

x
m−1

2 φ′(0)

= −x
m+1

2

(
a

ν∞

) 1
2

φ′(0)

= −
(
axmx

ν∞

) 1
2

φ′(0)
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= − (Rex)
1
2 φ′(0)

⇒ (Rex)
−1
2 Shx = −φ′(0). (4.30)

4.3 Solution Methodology

In this section, to get the approximate solution of the ordinary differential equations

(4.24)-(4.26) along with the boundary condition (4.27), the shooting method has been

used. First of all, we need to convert these equations into a system of first order differ-

ential equations. Let us use the following notations

f = h1, f ′ = h′1 = h2, f ′′ = h′2 = h3, f ′′′ = h′3,

θ = h4, θ′ = h′4 = h5, θ′′ = h5,

φ = t1, φ′ = t′1 = t2, φ′′ = t′2.

Now, the system of ODEs (4.24)-(4.25) with the boundary conditions (4.27) is trans-

formed into the following system of first order differential equations,

h′1 = h2, h1(0) = 0,

h′2 = h3, h2(0) = 1,

h′3 =
eαθ

1 + dy3

[
α

eαθ
h5h3

(
1 +

δ

2
h3

)
−
(
m+ 1

2

)
h1h3 +mh2

2 +M2h2

]
,

h3(0) = l,

h′4 = h5, h4(0) = 0,

h′5 =
Pr

1 +R+ εh4

[
rh2h4 −

ε

Pr
h2

5 −
(
m+ 1

2

)
h1h5

− Ec

eαh4

(
1 +

δ

2
h3

)
h2

3 −M2Ech2
2

]
, h5(0) = m.

In the above IVP, the missing conditions l and m are to be chosen to satisfy the following

relations,

(h2(l,m))η=η∞ = 0, (h4(l,m))η=η∞ = 0.

Here h2(l,m) and h4(l,m) are the values of h2 and h4 at η = η∞ for the chosen values

of the missing conditions l and m.
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Newton’s method with the following itrative scheme will be used to solve for the above

two equations with two variables.

 ln+1

mn+1

 =

 ln
mn

−
∂h2∂u

∂h2
∂v

∂h4
∂u

∂h4
∂v

−1

(ln,mn)

h2

h4


(ln,mn)

. (4.31)

To find the partial derivative of h2 and h4, the following notations have been intoduced

∂h1

∂l
= h6,

∂h2

∂l
= h7,

∂h3

∂l
= h8,

∂h4

∂l
= h9,

∂h5

∂l
= h10,

∂h1

∂m
= h11,

∂h2

∂m
= h12,

∂h3

∂m
= h13,

∂h4

∂m
= h14,

∂h5

∂m
= h15.

Using the above notations in (4.32), we get

 ln+1

mn+1

 =

 ln
mn

−
h7 h12

h9 h14

−1

(ln,mn)

h2

h4


(ln,mn)

(4.32)

Now differentiate the system of first order ODEs with respect to l and m, we get the

following ODEs,

h′6 = h7, h6(0) = 0,

h′7 = h8, h7(0) = 0,

h′8 =
(1 + δh3)αh9e

αh4 − eαh4(δh8)

(1 + δh3)2

[
α

eαh4
h5h3

(
1 +

δ

2
h3

)
−
(
m+ 1

2

)
h1h3 +my2

2

]
+

eαh4

1 + δh3

[
αeαh4(−αh9)h5h3

(
1 +

δ

2
h3

)
+

α

eαh4
h10h3

(
1 +

δ

2
h3

)
+

α

eαh4
h5h8

(
1 +

δ

2
h3

)
+

α

eαh4
h5h3

(
δ

2
h8

)
−
(
m+ 1

2

)
(h1h8 + h6h3)

+ 2mh2h7 +M2h7

]
,

h8(0) = 1,

h′9 = h10, h9(0) = 0,

h′10 = − Prε

(1 +Rεh4)2
h9

[
rh2h4 −

(
m+ 1

2

)
h1h5 −

Ec

eαh4
(
1 + δ

2h3

)h2
3

]
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+
Pr

1 +Rεh4

[
r(h2h9 + h7h4)− 2ε

Pr
h5h10 −

(
m+ 1

2

)
(h1h10 + h6h5)

− Eceαh4(−αh9)

(
1 +

δ

2
h3

)
h2

3 −
Ec

eαh4

(
δ

2
h8

)
h2

3 −
2Ec

eαh4

(
1 +

δ

2
h3

)
h3h8

− 2M2Ech2h7

]
,

h10(0) = 0,

h′11 = h12, h11(0) = 0,

h′12 = h13, h12(0) = 0.

h′13 =
(1 + δh3)αh14e

αh4 − eαh4(δh13)

(1 + δh3)2

[
α

eαh4
h5h3

(
1 +

δ

2
h3

)
−
(
m+ 1

2

)
h1h3 +mh2

2

]
+

eαh4

(1 + δh3)

[
αe−αh4(−αh14)h5h3

(
1 +

δ

2
h3

)
+

α

eαh4
h15h3

(
1 +

δ

2
h3

)
+

α

eαh4
h5h13

(
1 +

δ

2
h3

)
+

α

eαh4
h5h3

(
δ

2
h13

)
−
(
m+ 1

2

)
(h1h13 + h11h3) + 2mh2h12 +M2h12

]
,

h13(0) = 0,

h′14 = h15, h14(0) = 0,

h′15 = − Prεh14

(1 +Rεh4)2

[
rh2h4 −

εh2
5

Pr
−
(
m+ 1

2

)
h1h5 −

Ec

eαh4

(
1 +

δ

2

)
h2

3

]
+

Pr

(1 +R+ εh4)

[
r(h2h14 + h12h4)− 2ε

Pr
h5h15 −

(
m+ 1

2

)
(h1h15 + h11h5)

− Ece−αh4(−αh14)

(
1 +

δ

2
h3

)
h2

3 −
Ec

eαh4

(
δ

2
h13

)
h2

3 −
2Ec

eαh4

(
1 +

δ

2
h3

)
h3h13

− 2M2h2h12

]
,

h15(0) = 1.

The stopping criteria for the Newton’s method is set as:

max {|h2(η∞)|, |h4(η∞)|} < ε.

Using the notations, the system (4.26) with the boundary conditions (4.27) is converted 

into the following first order differential equations
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b′1 = b2, b1(0) = 1,

b′2 = Sc kr b1 − Sc
(
m+ 1

2

)
c1 b2, b2(0) = s,

b′3 = b4, b3(0) = 0,

b′4 = Sc kr b3 − Sc
(
m+ 1

2

)
c1 b4, b4(0) = 1.

The missing condition s is updated by the Newtons method and process will be continued

until the following criteria is met:

(b1(η∞))s=sn < ε.

where ε is an arbitrarily small positive number. From now onward ε has been taken

10−10.

In the above IVP, the missing condition s is to be chosen to satisfy the following relation.

b1(η∞)s = 0.

Here b1(η∞)s are the value of b1 at η = η∞ for the chosen value of the missing conditon

s. Newton’s method with the following iterative scheme will be used to solve the above

equation.

sn+1 = sn −
(b1(η∞))s=sn(
∂b1(η∞)

∂s

)
s=sn

. (4.33)

To find the partial derivative of b1 the following notation has been introduced

∂b1
∂s

= t3,

Using the above notation in (4.33), we get

sn+1 = sn −
(b1(η∞))s=sn
(b3(η∞))s=sn

.
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4.4 Results and Discussions

In this section, the numerical solutions are addressed in detail to examine the impact of

different parameters on velocity f ′(η), concentration φ(η) and temperature θ(η). The

impact of different factors like Williamson parameter δ, viscosity parameter α, radia-

tion parameter R, thermal conductivity parameter ε, local Eckert number Ec on the

skin friction 1
2(Rex)

1
2Cfx , local Nusselt number (Rex)−

1
2Nux and Sherwood number

Re
− 1

2
x Shx has been shown through the tables and graphs.

Table 4.1 discusses the effect of different parameters including the magnetic parameter

M , Schmidt number Sc and chemical reaction Kr on local skin friction 1
2(Rex)

1
2Cfx

has been shown in this table. By rising the value α, the local skin friction 1
2(Rex)

1
2Cfx

decreases. Silmilarly, by rising the values of Willaimson parameter δ, radiation parame-

ter R, thermal conductivity parameter ε, and Eckert number Ec, the local skin friction

1
2(Rex)

1
2Cfx shows a decreasing behaviour. Furthermore, by improving the values of

Schmidt numebr Sc, the local skin friction 1
2(Rex)

1
2Cfx, is found to be decreased. In

this table, Il and Im are the intervals from which the missing conditions l and m can be

chosen.

Table 4.2 discusses the effect of Williamson parameter δ, viscosity parameter α, thermal

conductivity parameter ε, radiation parameter R, Eckert number Ec, magnetic param-

eter M , chemical reaction parameter Kr and Schmidt number Sc, on local Nusselt

number (Rex)
−1
2 Nux. By improving the value α, the local Nusselt number (Rex)

−1
2 Nux

is found to decrease. By rising the values of Willaimson parameter δ, thermal conductiv-

ity parameter ε, radiation parameter R and Eckert number Ec, the local Nusselt number

(Rex)
−1
2 Nux shows a decreasing behaviour. Furthermore, by improving the values of

Schmidt numebr Sc, the local Nusselt number (Rex)
−1
2 Nux decreases. Simialrly, in this

table , Il and Im are the intervals from which the missing conditions l and m can be

chosen.

Table 4.3 discusses the effect of Williamson parameter δ, viscosity parameter α, thermal

conductivity parameter ε, radiation parameter R, Eckert number Ec, magnetic param-

eter M , chemical reaction parameter Kr and Schmidt number Sc, on local Sherwood
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number (Rex)−
1
2Shx. By rising the value of the viscosity parameter α, the local Sher-

wood number (Rex)−
1
2Shx is found to decrease. By improving the values of Willaimson

parameter δ, the local Sherwood number (Rex)−
1
2Shx shows a decreasing behaviour. In

this table, Il, Im and Is are the intervals from which the missing conditions l,m and s

can be chosen.

Figure 4.2 shows the detailed behaviour of the velocity f ′(η) for the values of viscoity

parameter α, with the constant values of the rest of the parameters. By increasing the

value of the viscoity parameter α, the velocity f ′(η) is found to decrease. Figure 4.3

shows the representation of the temperature profile θ(η) for the values of viscosity pa-

rameter α, and the rest of the parameters are considered as a constant.

Figure 4.4 represents the velocity f ′(η) for different values of Williamson parameter δ.

By increasing the values of Williamson parameter δ, the velocity profile f ′(η) is found

to decrease.

Figure 4.5 shows the behaviour of the temperature θ(η) for different values of Williamson

parameter δ. By improving the values of δ, the temperature profile θ(η) is found to in-

crease, which is an understandable behaviour. Figure 4.6 shows the behaviour of the

temperature field θ(η) for the values of the thermal conductivity ε. By rising the values

of ε, the temperature θ(η) shows a natural increasing behaviour.

Figure 4.7 shows the behaviour of the temperature θ(η) for different values of the ra-

diation parameter R, with the values of the rest of the parameters as constants. The

temperature θ(η) increases by rising the value of the radiation parameter R. Actually,

with an increase in the thermal radiation, the heat transfer increases because of which

the temperature θ(η) is increased.

Figure 4.8 represents the temperature θ(η) for various values of Eckert number Ec. By 

increasing the values of Ec, the temperature θ(η) is found to increase. Figure 4.9 shows 

the behaviour of the concentration profile φ(η) for different values of magnetic parameter 

M . By rising the values of the magnetic parameter M , the concentration φ(η) shows 

a decreasing behaviour. Figure 4.10 represents the velocity f ′(η) for the value of mag-

netic parameter M . By scaling the values of the magnetic parameter M , the velocity
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profile f ′(η) is found to decrease. Figure 4.11 shows the behaviour of the concentra-

tion profile φ(η) for various values of chemical reaction parameter Kr. By rising the

values of the chemical reaction parameter Kr, the concentratation φ(η) shows an in-

creasing behaviour. Figure 4.12 represents the concentration φ(η) for different vlaues of

Schmidt number Sc, with the constant values of the rest of the parameters. By rising the

values of Schmidt number Sc, the concentration φ(η) is found to decrease. Figure 4.13

represents the behaviour of the temperture θ(η) for various values of Schmidt number Sc.

By improving the values of Schmidt number Sc, the temperature θ(η) shows an in-

creasing behaviour.

Figure 4.14 represents the behaviour of the concentration φ(η) for various values of the

radiation parameter R, with the rest of the parameters set to constant levels. The con-

centration φ(η) displays an increasing behaviour as the values of the radiation parameter

R are improved.

Table 4.1: Values of (Rex)
1
2Cfx, for α, ε, δ, R, Kr, Sc, Ec, M with m = 1

3 and
Pr = 2.0

α δ ε R Ec M Kr Sc Il Im (Rex)
1
2Cfx

0.5 0.2 0.2 0.2 0.2 0.2 1 0.2 [-0.9,-0.6] [-0.9,-0.5] 0.567727

0.0 [-0.7,-0.1] [-1.3,-0.1] 0.685700

1.0 0.3 [-0.9,-0.8] [-0.9,-0.8] 0.474920

0.2 0.0 0.2 [-0.9,-0.8] [-1.0,-0.1] 0.570457

0.5 0.2 1 0.6 [-0.9,-0.6] [-0.9,-0.7] 0.523903

0.0 2 0.2 [-0.9,-0.8] [-0.9,-0.8] 0.590572

0.5 3 [-0.9,-0.6] [-0.9,-0.7] 0.564283

0.0 1 0.7 [-0.9,-0.6] [-0.9,-0.8] 0.570876

0.2 0.0 0.2 0.2 [-0.9,-0.7] [-0.9,-0.6] 0.569618

0.5 1 [-0.9,-0.7] [-0.8,-0.1] 0.564927

0.5 0.2 0.4 5 [-0.9,-0.8] [-0.7,-0.5] 0.621859

1.0 0.2 1 2.6 [-0.9,-0.7] [-0.9,-0.5] 0.559121
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Table 4.2: Values of (Rex)−
1
2Nux, for α, δ, ε, R, Ec, M, Kr, Sc with m = 1

3 , and
Pr = 2.0

α δ ε R Ec M Kr Sc Il Im (Rex)−
1
2Nux

0.5 0.2 0.2 0.2 0.2 0.2 1 0.2 [-0.9,-0.6] [-0.9,-0.5] 1.25018

0.0 [-0.7,-0.1] [-1.3,-0.1] 1.30979

1.0 0.3 [-0.9,-0.8] [-0.9,-0.8] 1.14659

0.2 0.0 0.2 1 [-0.9,-0.8] [-1.0,-0.1] 1.19610

0.5 0.2 0.6 [-0.9,-0.6] [-0.9,-0.7] 1.22244

0.0 2 0.2 [-0.9,-0.8] [-0.9,-0.8] 1.26289

0.5 3 [-0.9,-0.6] [-0.9,-0.8] 1.32364

0.0 1 0.7 [-0.9,-0.6] [-0.9,-0.8] 1.17152

0.2 0.0 0.2 0.2 [-0.9,-0.7] [-0.9,-0.6] 1.34822

0.5 [-0.9,-0.7] [-0.8,-0.1] 1.10408

0.5 0.2 0.4 5 [-0.9,-0.7] [-0.7,-0.5] 1.27654

1.0 0.2 1 2.6 [-0.9,-0.7] [-0.8,-0.1] 1.10408

Table 4.3: Values of (Rex)−
1
2Shx for α, δ, Ec, M, Kr, Sc, ε, R with m = 1

3 , and
Pr = 2.0

α δ ε R Ec M Kr Sc Il Im Is (Rex)−
1
2Shx

0.5 0.2 0.2 0.2 0.2 0.2 1 0.2 [-0.9,-0.6] [-0.9,-0.5] [-0.9,-0.3] 0.48578

0.0 [-0.7,-0.1] [-1.3,-0.1] [-0.9,-0.1] 0.48864

1.0 0.3 [-0.9,-0.8] [-0.9,-0.8] [-0.9,-0.4] 0.48120

0.2 0.0 0.2 [-0.9,-0.8] [-1.0,-0.1] [-0.9,-0.1] 0.48588

0.5 0.2 0.6 [-0.9,-0.6] [-0.9,-0.7] [-0.8,-0.3] 0.40552

0.0 2 0.2 [-0.9,-0.8] [-0.9,-0.8] [-0.9,-0.1] 0.66459

0.5 3 [-0.9,-0.6] [-0.9,-0.8] [-0.9,-0.4] 0.80232

0.0 1 0.7 [-0.9,-0.8] [-0.7,-0.5] [-0.9,-0.4] 0.93203

0.2 0.0 0.2 0.2 [-0.9,-0.7] [-0.9,-0.6] [-0.9,-0.2] 0.48585

0.5 0.2 [-0.9,-0.7] [-0.8,-0.1] [-0.9,-0.2] 0.48568

0.5 0.2 0.4 5 0.2 [-0.9,-0.8] [-0.7,-0.5] [-0.9,-0.2] 1.02252

1.0 0.2 1 2.6 [-0.9,-0.7] [-0.7,-0.5] [-0.9,-0.4] 1.83634
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Figure 4.2: Impact of various values of α on velocity f ′(η) with δ = ε = R
= M = Ec = Sc = 0.2, Pr = 2.0, Kr = 1, m = 1

3

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

 = 0.0
 = 0.3
 = 0.5
 = 1.0

Figure 4.3: Impact of various values of α on temperature θ(η) with δ = ε = R
= M = Ec = Sc = 0.2, Pr = 2.0, Kr = 1, m = 1
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Figure 4.4: Impact of various values of δ on velocity f ′(η) with ε = Ec = M = Sc
= R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1
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Figure 4.5: Impact of various values of δ on temperature θ(η) with ε = Ec = M = Sc
= R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1
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Figure 4.6: Impact of various values of ε on temperature θ(η) with δ = Ec = M = Sc
= R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1
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Figure 4.7: Impact of various values R on temperature θ(η) with δ = ε = Ec = M
= Sc = R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1

3



Williamson Flow MHD Joule Heating and Chemical Reaction 55

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

 Ec = 0.0
 Ec = 0.2
 Ec = 0.3
 Ec = 0.5

Figure 4.8: Impact of various values of Ec on temperature θ(η) with δ = ε = M
= Sc = R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1
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Figure 4.9: Impact of various values of M on concentration φ(η) with δ = ε = Ec
= Sc = R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1
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Figure 4.10: Impact of various values of M on velocity f ′(η) with δ = ε = Ec
= Sc = R = 0.2, α = 0.5, P r = 2.0, Kr = 1, m = 1
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Figure 4.11: Impact of various values of Kr on concentration φ(η) with δ = ε = Ec
= Sc = R = M = 0.2, α = 0.5, P r = 2.0, m = 1
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Figure 4.12: Impact of various values ofSc on concentration φ(η) with δ = ε = Ec
= R = M = 0.2, α = 0.5, P r = 2.0, m = 1
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Figure 4.13: Impact of various values of Sc on Temperature θ(η) with δ = ε = Ec
= R = M = 0.2, α = 0.5, P r = 2.0, m = 1
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Figure 4.14: Impact of various values of R on Concentratrion φ(η) with δ = ε = Ec
= R = M = 0.2, α = 0.5, P r = 2.0, m = 1
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Chapter 5

Conclusion

In this thesis, the work of Ahmed M. Megahed [24] is reviewed and extended by MHD,

Joul heating and chemical reaction. First of all, momentum, energy and concentration

equations are changed into the ODEs by using some similarity transformations. By using

the shooting method, numerical solution is found for the transformed ODEs. Using

different values of the governing physical parameters, the results are presented in the

form of tables and graphs for velocity, temperature and concentration profiles. The

achievements of the current research can be summarized as below:

• Expanding the values of viscosity parameter α, the velocity profile decreases while

the temperature profile shows an opposite behaviour.

• For improving the values of the radiation parameter R, the temperature θ(η) is

increased.

• Due to the increasing the values of ε, the temperature profile increases.

• Expanding the values of Williamson parameter δ, the velocity profile is decreased.

• The velocity profile is decreased due to expanding the values of the chemical reac-

tion paramater Kr.

• By rising the values of Eckert number Ec, the temperature distribution θ(η) is

also increased.

• By expanding the values of the magnetic parameter M , the concentration profile

is observed to increase.
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• Due to the ascending values of Schimdt number Sc, the numerical values of Sher-

wood number are increased.

• Due to the rising values of the chemical reaction parameter Kr, the values of

Nusselt number are observed to rise while Sherwood number is decreased.
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